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A theory of electromagnetic field measurement by means of photoionization is developed and applied to 
photoelectron counting. A probability theory involving multitime joint probability functions for a sequence 
of photoionizations is formulated. A general quantum-theory definition is proposed for the nonexclusive 
probability function which occurs in the probability theory. Approximations are then introduced to derive 
expressions for this probability function which involve correlation functions of the photoionization detector 
and the electromagnetic field-plus-source. The general theory is used to derive quantities of interest in photo
ionization counting experiments. Expressions are derived for (1) the probability Pn(t, t-\-T) that n photo
ionizations are observed in the time interval / to t-\-T, and (2) quantities related to Pn(t, t-\-T), such as its 
generating function and various moments. Pn(t, t-\-T) is found to be a compound Poisson distribution de
termined by the density operator of the field when the latter is expressed in Glauber's P representation. 
Using this result, the character of Pn(t, t+T) is examined for several specific density operators. These cor
respond to a coherent state, various fields with the mode phases distributed independently of the mode 
amplitudes, and a "spread-out" coherent state. 

I. INTRODUCTION 

TH E recent advent of nearly coherent sources of 
electromagnetic radiation in the region of optical 

frequencies has led to the possibility of observing cor
relations between photoionization events which reflect 
correlations in the electromagnetic field of a nearly 
coherent source. Experiments to measure photoelectron 
correlations using coherent sources have been performed 
in a number of laboratories. For example, the power 
spectrum1-5 and photocounting statistics6 of a helium-
neon laser have been studied. These experiments can be 
related to the time-correlation measurements of Han-
bury Brown and Twiss,7,8 which were carried out on an 
incoherent source. The feasibility of such experiments 
on nearly coherent sources has led to a renewed interest 
in how the dynamical state of the electromagnetic field 
is related to photoionization information. 

The theory of photomeasurement has until recently 
been developed almost entirely for the measurement of 
the field of an incoherent source. This theory, which has 
been comprehensively reviewed recently,9 involves a 
semiclassical treatment of photoionization processes. 
An expression for Pn(t, t-\-T), the probability that n 
photoelectrons are observed in the time interval t to 
t+T, is derived for use in connection with a particular 
measuring technique—photoelectron counting. The 
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derivation10 is based on the assumption that the prob
abilities of photoionization in different, small time in
tervals are statistically independent. In addition, the 
latter probabilities are assumed to be proportional to the 
light intensity which may depend on time. These as
sumptions lead to a simple Poisson distribution for 
Pn(t, t+T). Time or ensemble averaging is then per
formed to obtain a compound Poisson distribution. In 
the ensemble averaging the real and imaginary parts of 
the complex field amplitudes are treated as Gaussian 
random variables. 

The desirability of using a thorough quantum treat
ment as the basis of the theory of measurement of the 
electromagnetic field and of avoiding the Gaussian 
random variable assumption for a coherent source was 
clearly emphasized in recent work of Glauber.11 Glauber 
has given an appropriate definition of a coherent state12 

and has developed13 the formal properties of electro
magnetic field correlation functions using quantum 
electrodynamics. For incoherent fields the second-order 
correlation function determines all the higher order 
correlation functions. This is no longer true in general 
for partly coherent fields, such as can be expected from a 
laser. Glauber13 introduces what he calls the P repre
sentation, a representation diagonal with respect to 
coherent states. Use of the P representation allows field-
correlation functions to be expressed in a manner 
formally very similar to the usual classical expressions. 
This formulation also facilitates making the transition 
to the classical limit. Sudarshan14'15 has shown that an 
arbitrary density operator of the electromagnetic field 
can be represented formally in Glauber's P represen-
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tation provided one allows for the possibility of a 
highly singular distribution for the P function. 

The present development is concerned with a general 
formulation of the problem of photomeasurement by 
photoionization. In most experiments multiple measure
ments of the electromagnetic field are made by the 
photomeasuring apparatus. In Sec. I I the probability 
theory of nonindependent photoionization events in 
various microscopic time intervals is developed to 
provide for the subsequent treatment of a general 
starting point involving a minimum of assumptions. 
Joint probabilities are given for 

(1) exclusive probabilities, for photoionizations oc
curring in a certain set of such subintervals and not 
occurring in others, and for 

(2) nonexclusive probabilities, for photoionizations 
occurring at least in a certain set of subintervals. 

In Sec. I l l the joint probabilities of Sec. I I are used 
to obtain quantities related to experiment, in particular, 
the probability Pn(t, t+T) of n photoionizations in the 
time interval / to t+T. I t is shown that Pn(t,t+T) 
depends on all the nonexclusive joint probabilities of 
order >n, without regard to the detailed structure of 
the field-detector system. On the other hand, the rath 
factorial moment of Pn(t,t+T) depends only on the 
nonexclusive joint probabilities of order m. 

Section IV has a quantum-mechanical derivation of 
formulas for the nonexclusive joint probabilities of Sec. 
I I . The resulting formulas involve correlation functions 
of the detector and the field-plus-source. The joint 
probabilities are calculated using the repeated random-
phase assumption for the detector. I t is assumed that 
at the beginning of each subinterval the detector can be 
considered to a sufficient approximation to have re
turned to its ground state or thermal equilibrium state. 
In addition, the electromagnetic field is assumed to 
develop independently of the detector between sub-
intervals. The coupling of the detector to the field is 
considered weak enough so that the time development 
of the field can be assumed to depend only on its inter
action with the source. In this restricted sense, we may 
think of the measurements made on the field as not 
disturbing it appreciably. Using this approximation the 
photoionization correlations in time are determined by 
the dynamical development of the field plus its sources. 
In order to make contact with the work of Glauber,11-13 

Sudarshan,14,15 and others, the full correlation functions 
are related to the correlation functions of the field alone. 
This approximation involves effectively treating the 
field as a closed dynamical system. 

In Sec. V the results of Sec. IV are used to express 
Pn(t, t+ T) and related quantities as averages with re
spect to the density operator of the field and its sources. 
The quantity averaged is a function of field operators 
and a detector-correlation function. The result for 
Pn(t, t+T) shows a clear formal resemblance to a 
Poisson distribution. 

If the time dependence of the field operators is deter
mined solely by the field Hamiltonian, as assumed by 
others,11"15 the results can be expressed in terms of 
Glauber's coherent states. Use of the P representation 
of Glauber then shows that Pn(t, t+T) is a compound 
Poisson distribution. Using this result, the character of 
Pn(t, t+T) is examined for several specific density 
operators. These correspond to a coherent state, various 
fields with the mode phases distributed independently 
of the mode amplitudes, and a "spread-out" coherent 
state. 

Finally, in Sec. VI a brief discussion is given of the 
implications of the free field motion assumption and of 
the applicability of the compound Poisson distribution 
to experiment. 

II. PROBABILITY FUNCTIONS 

Definitions 

To deal with a large class of photomeasurement ex
periments in a unified way, we introduce hierarchies of 
distribution functions depending on time coordinates. 
These functions are related to the rate at which photo
ionization occurs at various times on various photo-
emissive surfaces, as a consequence of the presence of an 
electromagnetic field. The distribution functions are 
used as a basic ingredient in evaluating systematically 
various statistical quantities of experimental interest, 
discussed in Sec. I I I . The present development has the 
advantage of allowing one to obtain directly quantities 
of interest in photomeasurement experiments in terms 
of joint photoionization probabilities without making 
any assumptions concerning the nature of the inter
action of the electromagnetic field with the detector or 
of introducing unnecessary statistical assumptions. In 
this section, the WK, (?K, WK, and (PK

f functions are 
defined and their properties and interrelations are 
discussed. 

The distribution functions are introduced as follows. 
The time interval / to t+T is divided into N small sub-
intervals. Eventually, one can go to the limit of large N. 
The basic distribution function is 

^ M y i ^ V - O ' t f ) , (2.1) 

where y*, a random variable, is a coordinate for the i th 
time interval. For L photoemissive surfaces in the de
tector system, yi=(yii,yiv,y%i) is an L-component 
vector, each component of which can take on one of the 
two values: 0 and 1.°WN incorporates all the information 
about the system of electromagnetic field in interaction 
with L photoemissive surfaces that can be obtained by 
observing when photoemission processes occur on each 
of the L surfaces during the interval / to t+T. For 
simplicity, the formalism will be developed for a single 
photoemissive surface. When each member of the set 
{yi} of y's is assigned a value, W.N is interpreted as the 
probability that one photoionization process occurs in 
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each interval with y~l and no photoionization process 
occurs in each interval with y~0. More than one photo
ionization process in a subinterval of length At is pre
cluded by making N sufficiently large, so that only two 
values of a coordinate ji are needed. In other words, 
At<&R~l, where R is the photoionization rate. Implica
tions of the above condition together with the limitation 
on the size of At required by the quantum-mechanical 
development are discussed in Sec. IV. In terms of %y>, 
one can define a set of tNl/Kl(N-~K)l]eWK's: 

WKtyiuy*,'' • , ? * ) = £ Wiv(yi,j2, • • • ,yN), (2.2) 

where the sum is over the values of the set {ji} except 
yh> yh> " 'J y*K- Clearly, 0<K<N, and by conservation 
of probability, W o = l . cWK(yi1,yi2,'' 'flitd corresponds 
for a discrete random series to the WK.(y\t\,y4^ • • * ,y^x) 
discussed by Wang and Uhlenbeck16 for a continuous 
random process; see also Middleton.17 

Various quantities of physical interest are defined as 
a mean ('"){yi) with respect to %v> of a function 
$(yii,yi2,'-,yiK) of t h e / s : 

($(yn,yi2,--,yiK)){yi} 

i 
s L $(yh,yi2,--,yiK)'WN(yuy2,-'>y!r) 

l 

L $(yii,yi2>- -jiK) 

x^Kiyn^'-yiK). (2.3) 

Note that in the particular choices for the $ function 
used in this section the y for each subinterval occurs at 
most linearly. Thus in any of the products of y's used 
subsequently, the y for a given subinterval appears only 
once if at all. In this manner, one can introduce the 
product moment function 

(pjK(ii,*2, • • • M)=(yiiyn - -yiRhvi) (2.4a) 

= e W x ( ^ 1 , ^ 2 , • ' * ,yiK) 12/n=y*2=- • -=yiK=l 

(2.4b) 

which is the probability that a photoionization event 
occurs at least in each of the intervals ii, ii, • • •, IK> 
Note that i n W ^ and (?K, distinct arguments never refer 
to the same subinterval. 

The quantity wK(k,k^ • • ,/.K), which is the mean 
probability per (unit time)^ that photoionizations occur 
in the intervals h to / i+A/j , /2 to /2+A/2, • • •, IK to 
IK+AIKI is defined by 

<P*(n,iv * • , t i )sKii( / i , / 2 , ' • '9tK)AhAi2' • -AtK> (2.5) 

Use of this quantity facilitates passage to the continuous 
limit. 

16 M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323 
(1945). 

17 D. Middleton, An Introduction to Statistical Communication 
Theory (McGraw-Hill Book Company, Inc., New York, 1960). 

In Sec. I l l it is shown that various quantities of ex
perimental interest are expressed naturally in terms of 
the tfVs or the WK'S. General quantum-mechanical 
expressions for WK(thh, • - • ,/#) are derived in Sec. IV. 

One might expect that WKQ-XM, ''' JR) can be repre
sented in the form 

% = E ^ W . & W , (2.6) 

of a sum of products of a function 3£K(O) depending only 
on coordinates of the detector and a function GK(O) of 
the coordinates of the electromagnetic field and its 
source. The quantum-mechanical derivation in Sec. IV 
does, indeed, yield this form, where the sum over a 
becomes a 2K coordinate integration. 

Another probability function (9 K can be defined con
veniently as 

<PJC'(*I,*2,-'•>**) 

^{TLyo fi (1~^))W (2.7a) 

==eWjv(yi,3'2,' * * dN) I \vi\=0 except 0u=irt2=- • •»lrtjC~1 • (2.7b) 

(PK 0-1^2,' - - ,1K) is the probability that one photoioniza
tion process occurs in each of the intervals ih t2, • • •, IK 
and no photoionization processes occur in any of the 
remaining N—K intervals. The events whose proba
bilities are given by the tfVs are mutually exclusive and 
altogether comprise all possible 2N events. The events 
whose probabilities are given by the GVs are, in con
trast, not mutually exclusive. This makes the flV's 
useful in various derivations and calculations, although 
final results are ordinarily more appropriately expressed 
in terms of the (9K§ than in terms of the (PK"S. 

Relations Among Probability Functions 

Some further relations among the functions V?K, (9K> 
and (9R\ which have been introduced in this section, 
will now be discussed. A generating function for the 
(9K"S is given by 

Q(uhU2,'--,uN;vuv2,' - -jVN) 

N 

= Z E &K(ii,h,• • • M) 

K N 

X I I ^ I I vit (2.8a) 
t -1 l=*K+l 

= (II buui+(i-y<)vil>iVi}. (2.8b) 

The right-hand summation in (2.8a) is over all distinct 
sets of K intervals chosen from the N intervals. If Ui is 
replaced by Ui+v^ one obtains a generating function 
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for the GVs 

9(«1+Vl, ^2+^2 , • • * , m + VNl Vi,V2>' • • ,VN) 
N 

= <II (y<«*+w*)>{yj (2.9a) 

N 

= E E (PJK(*I,<2, • • • ,ix) 

xn«« n »*,. (2.%) 

"WJV can be represented in terms of the &K"S as 

^Niyuy^'^yN) 

N 

= E E tfV(ii,*2, * • • M) 
K=0 {h,i2,--,iK} 

XY[yik I I (1-yid (2-lOa) 

= 9(:yiOV -,yNi l-yi, i - ? 2 , • • •, l - ^ ) . (2.10b) 

By using the expansion 

N N m 

n ( 1 - ^ ) = E ( - D - * E ' n * , (2.1D 
l*-K+l m=K {iK+l,'-',im) l=K+l 

in (2.7a), one obtains directly the expressions 

<Px'(ii,*V ••>**) 

= E ( - 1 ) — * 
m=*K 

X E ' CPm(.ii,i2, • • • ,ix,ijr+i, • • • ,i») (2.12a) 

Ar r^m-K 

= E 
m=js: (m—K)\ 

N 

X E 7 CPm(i'i,̂ 2, • • *,Wir+i, * * * >*«) (2.12b) 

for (P^'^i,^, * • • ,IK) in terms of the (Pm's with K<m<N. 
The prime on the summation symbol in (2.11) and in 
(2.12a) indicates that the sum is over distinct sets 
{iK+i,iK+2,-'' ,im} of m—K intervals containing none of 
the intervals ii, u, • • •, t#. In the corresponding sum in 
(2.12b), no two of the intervals IK+I, , , , , 4 i n a term 
are the same, otherwise IK+U —> '*»» e a c n r u n f r o m 1 to 
TV excluding the intervals ii, *2, •••, i*. Similarly, by 
using the expansion 

1= II [>.,+(!-*«)] 

AT ' m AT 

= E E ' I I y„ I I ( l -y.- . ) (2.13) 
m**K ; iK M , • • •, iff*} l^K-\ 1 »-=«»+1 

in (2.4a), one obtains the expressions 

— E E ' ( P m / ( v 2 )
, , ,

) ^ + b , , , A ) (2.14a) 

m—i£ {*JK"-hl, - * • ,im} 

N 1 

= E 
m^K(m—K)\ 

N 

X E ' (?m'(ii,i2, • • • MM+h • • * ,*m), (2.14b) 

for (Px(^2, * ' ' j ^ ) in terms of the (Pm"s with K<m<N. 
The last product in (2.13) includes all N—m intervals 
not in the set ih h, • • •, zx, IK+U ''' > ^»; the sums in 
(2.13) and (2.14a) are as in (2.11) and (2.12a), and the 
sums in (2.14b) are as in (2.12b). 

One can also express V?N in terms of the (?K'S by using 
(2.12) to substitute for <9K' in (2.10a). The resulting 
relation together with (2.10a), (2.4b), (2.14), (2.7b), and 
(2.12) constitute six relations among the probability 
functions of the three types: %v>, (?K, (?K- A probability 
function of one type can be represented separately in 
terms of probability functions of each of the remaining 
two types. 

III. PROBABILITY THEORY OF COUNTING 
STATISTICS 

The output of an instrument for measuring the state 
of an electromagnetic field by means of photoionization 
processes is a signal current due to the photoionizations 
which occur as a function of time. We assume this signal 
can be represented as 

S(t)= E FAt-U)yi, (3.1) 

where yi is the random variable defined in Sec. I I , and 
Fi(t—li) is a function defining the distribution in time 
of the signal pulse contributed by a photoionization 
event at time U in interval i. Although Fi(t—ti) can also 
be treated as a random variable, for present purposes we 
will assume it is a fixed function. The sum in (3.1) 
extends over the whole time axis. [If the instrument has 
L output signals, associated with different regions of the 
electromagnetic field, S(t) is an Z-dimensional vector.] 

Quantities of statistical interest which can be meas
ured with the instrument are in general functionals of 
S(t). A class of interesting random quantities can be 
represented in terms of linear functions of products of 
the signals of the type 

/.OO /»00 /»00 

XS(h)S{h)• • -SiQdhdh- • -dtn, (3,2) 
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where/ is a suitable function of h, h, • • •, tn- For example, 
the integrated signal ftt+TS(tf)dlf and its products 
fall in this class, as do various time-correlation func
tions and Fourier transforms, such as fS(tf)S(tf+r)dtf, 
f'feiurS(?)S(t'+T)dt'dT, and their generalizations. 
The function / represents an operation applied to the 
signal to extract from it information such as the number 
of photoionizations within a time interval, the correla
tions between photoionizations at different times, or the 
power spectrum of the signal. Thus, / could represent 
the effect on the signal of a photocounting circuit, a 
delay line and coincidence circuit, or a spectrum 
analyzer. Using the idempotent property y?—yi of ji, 
we find for n=l, 2, and 3 

V1=T,Aiyi, (3.3a) 
i 

F 2 = Z ' Anyiyj+Y, Auyi, (3.3b) 
i,3 i 

Vz= £ 'Aijky iy jyk 
i,j,k 

+YJ(A nj+Aiji+AjidyM+Y, Aiuji, (3.3c) 
i,3 i 

where the sums are over all intervals, the primes denote 
that only terms with no summation indices alike are 
included, and 

/

OO /»00 y.00 

/ • • • / j(t\ , / 2 ) ' " Jn ) 
"co —oo —oo 

XFi1(ti—til)Fi2(t2"-ti2)' ' ' 
XFin(tn-tin)dh'dt2- • • * „ ' . (3.4) 

I t is apparent from (3.3) that the mean of any Vn with 
respect to the distribution of the y's, given by (2.3), is 
expressible as a linear combination of the <3Vs of (2.4) 
w i t h Z = l , 2, • • - , » . 

In the rest of this section, we confine our attention to 
a model for an idealized photo electron counter obtained 
when the values of the ^4's of (3.4) are given by 

fi t<th,ti2, . . . , ^ < / + r , 
Aiii2..>%n— \ # (3.5) 

10 otherwise. 

The mth power of n(t, t+T), the number of photoelec-
tron emission events in the interval t to t+T, is^then 
given by Vm, so that V\ yields 

»(/,/+r)=Ey*. (3-6) 
i=l 

Time delays are neglected as a consequence of the choice 
(3.5). The choice (3.5) for Aixi2...in can be realized, for 
example, as follows. The mth power of the integrated 
signal Stt+T S(tf)dtf is given by Vm when / is a product 
of m rectangular pulse functions, one for each U in / ; a 

single rectangular pulse function is unity inside the 
interval / to t+T and zero outside. When the signal 
pulse is then represented by a delta function, Fi(t—ti) 
= 8(t—ti), it follows that (3.4) yields (3.5). A function of 
n(t, t+T) which has a relatively simple form when ex
pressed in terms of the ySs is the mth factorial moment18'19 

of n=(t, t+T), the random variable n[m]z=n(n— 1)- • • 
X(n—m+1). I t becomes 

»w= E' yw-yi*, (3.7) 

where the prime indicates that terms with ih n, • • *, im 

not all distinct are omitted. The result (3.7) is evident 
from (3.3) for w = 1, 2, and 3 when (3.4) is specialized, 
and is readily proved for general m by induction. Only 
products of degree m occur in (3.7). This simplifying 
feature does not hold in general. For example, the 
generalization of n[2] = n(n—l) is, from (3.3), 

V2- F i = E ' Aiiy%yj+2:(Aii-Ai)yi. (3.8) 
i,j i 

In (3.8), Aa—Ai does not vanish in general. 
I t may be worthwhile noting that when Fi(t—ti) 

= 8(t—ti), the signal integrated over the ith interval is 
simply the random variable yi. This allows the definition 
(2.4) of the basic probability (Pw(ii,- • - ,in) to be inter
preted as a mean value of a product of n integrated 
signals, one over each of the intervals i\, ii, • • •, in. 

So far, the discussion in this section has been mainly 
in terms of random variables. We now consider averages 
with respect to the y's of functions of the TVs in order 
to represent observable quantities. For our purposes, it 
is sufficient to find the probability function for V\ of 
(3.3a) which is given formally by 

Prob(Fi) = < « ( F i - E A0i))[yi). (3.9) 
* 

For the idealized photoelectron counter case, where 
Vi=n(t,t+T), the probability Prob(Fi)=P n (* , t+T) 
becomes, according to (3.6) and (3.9), 

P»(/,/+r)=<*»,£y<>w 

{h,te,'~>in} 

1 N 

= — 1 / (P,/(ii,i*,-••,*»), (3.10) 
nl h,i2,-",in=*l 

which is the probability of exactly n photoionizations in 
the interval t to t+T. Note that the natural definition 
of Pn(t,t+T) is in terms of the exclusive probability 
function (2.7) rather than in terms of the nonexclusive 

18 M. G. Kendall and A. Stuart, The Advanced Theory of 
Statistics (C. Griffin and Company, Ltd., London, 1958). 

19 S. S. Wilks, Mathematical Statistics (John Wiley & Sons, Inc., 
New York, 1962). 
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probability function (2.4). I t has the generating function 
N 

G(«0=L Pn(t,t+T)un 

= <nCy^+i-y*-)>Jy.-) 

: E E <Pm(il,i2,' ' ' ,£»)(«- 1)" 
W==0 {H,t2»-**»t'm} 

> E / / ••• / w m ( * i , V , i 
w=0 J t J t J t 

*m) 

(u-l)m 

Xdhdtr ' -dtm , (3.11) 
m\ 

derived from (2.8): G(«)=9(*MV • •,«; 1,1,- • -,1). The 
expression involving (Pm follows directly on expanding 

nci+y*(«-l)] 

in powers of «—1. The arrow indicates passage to 
the continuous limit. The last expression yields im
mediately an expression for Pn(t, t+T) in terms of the 

1 / d\n 

Pn(t,t+T)=-(—)G(u)\u^ 

*t+T 1 oc . ( - l ) « - » r* 2 , 

E w! »»=o (m—n)\ Jt Jt 

n pt-i-T pt-

lJt J i 

rt+T 

X / wm(tht2,- - ',tm)dhdt2' "dtm. (3.12) 

This result is also obtained by substituting (2.12b) into 
(3.10). An expression for the mean with respect to the 
y's of the mth factorial moment (3.7) can be derived 
as follows using G(u): 

N n\ 
< » W > W = E -Pn(t, t+T) , 

«=o (n—m)\ 

= (d/du)mG(u) | u=i 

=w! E (Ryu 

iV. 

x n Gv.w+i-y*))* v*l I «=l 
= WI E ^m(il,^2,' * * ,im) 

{il,i2,"',im} 

rt+T t>t+T rt+T I* t+T pt+T ft 

'I I "i 
dy, (3.13) follows i 

(3.7) with respect to the y's: Note that the integral in 

Xdhdt2--dtm- (3.13) 

Alternatively, (3.13) follows immediately on averaging 

(3.12) is just (n[m]){yi}. The counterpart for (n[m]){Vi} of 
the fact discussed following (3.7), that n[m] contains 
only products of degree m, is that (n[m]){yi} contains 
only wK(tiyt2,- • • , /K) ,S with K=m. This is to be con
trasted with the fact that in (3.12) Pn(t, t+T) depends 
on all wK(ti,t2,' • - , ^ ) ' s with K>n and that in (3.13), 
<«[ml){*j depends on all Pn(t, t+T)'s with n>m. 

Thus, it has been shown how expressions for quantities 
of experimental interest such as (n[m]){yi} may be given 
very simply in terms of joint photoionization proba
bilities. The use of joint photoionization probabilities 
has avoided any unnecessary statistical assumptions 
and the introduction of any physical approximations. 
In Sec. V the approximations used in Sec. IV to relate 
the joint photoionization probabilities to correlation 
functions of the electromagnetic field are applied to the 
results of this section. I t is to be noted, however, that 
the results of this section are general enough so that 
they can be applied to situations where the approxima
tions of Sec. IV break down. 

IV. QUANTUM THEORY EXPRESSION FOR 

We will now obtain a quantum-mechanical expression 
for the joint probability w ^ i A " ' ^ ^ ^ ' ' ^ ^ 
that photoionization events occur in the intervals h to 
h+Ath t% to h+Afo, - - - and tK to fa+ Afe. Here, all the 
At's are positive and ^>^-_i+A^_i ; we order the times 
for convenience in the derivation. First we introduce a 
formal expression for this probability. 

For the single time interval U, U+Ati, we shall assume 
that the probability for a photoionization to the Zth 
(measurable) photoionization state of a detector when 
the system at time U is in state | ti) is just the absolute 
value squared of the amplitude 

\U+Mi+)=Au\ti), (4.1) 

for the compound event that the Ith photoionization 
state is unoccupied at time ti and occupied at time 
U+Ati, that is, that the Ith photoionization state becomes 
occupied in the interval U, U+Ak. In (4.1) 

Au-PiU-Kk+Ati, k)(l-Pi). (4.2) 

Here Pi is the projection operator for the Zth photo
ionization state, and with fi=l, 

U~l{t',t) = e x p [ - «C(* ' - 0 ] (4.3) 

is the time evolution operator for the system between 
the times t and t\ where 3C is the Hamiltonian of the 
total system of detector, electromagnetic field, and 
sources. An extension can be made to take account of 
the probability fi that, if the detector is in the Ith 
photoionization state at time /rf-A/»,the photoionization 
is actually measured. This could be done simply by in
serting the factor fi* in (4.2). 

The amplitude analogous to (4.1) for the multitime 
probability, corresponding to a sequence of such com-
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pound events, is then given by 

\tK+MK+) = AKiKBK-' •i42i f5«4n l5i|0>, (4.4) 

where Bt is the time evolution operator which relates 
| / t - i+Ak_i+) to \u) and where for i = l , |k- i+A/i_i + ) 
= |0), the state at time 2=0. 

The multitime probability is now expressed in terms 
of a trace of a density operator as follows: 

wK{hlhhh}' • ",tefe)A*iA/2-' * A2*: 
= Trp(/H-Ate+), (4.5) 

where the density operator P ( / # + A / K + ) is given for the 
amplitude (4.4) by 

p(tK+AtK+)= \tK+AtK+}(tK+AtK
+\. (4.6) 

We also introduce in place of An a "superoperator" 
®i given by the following identity: 

<M=i: AiMJ, (4.7) 

where 6 is an arbitrary operator. This allows us to 
express the relation between p(k) and p(k-\~Ak+) as 

p(U+ldi+)=aip(U), (4.8) 

taking into account transitions to all measurable photo-
ionization states. In a similar manner, to replace Bi, we 
introduce a superoperator (B»*. This operator relates 
p(k_i+A/,-_i+) and p(k) in the following way: 

p(k) - <fcp(/<-rf Afe_i+). (4,9) 

Introduction of the superoperator (B» is done for more 
than reasons of formal simplicity; we are going to intro
duce an approximation for (B« which cannot be simply 
expressed as an approximation in terms of Bi. A formal 
expression for the multitime probability for transitions 
to all measurable photoionization states is then 

wK{tuh,' > - JK)AhAh' ''AtK 

= T r a * ® * - • • GB2ai(Bip(0). (4.10) 

We now make the following assumptions concerning 
the nature of (B*. (1) The density operator for the total 
system of detector and electromagnetic field together 
with its sources (by sources we mean here all systems 
other than the detector which interact with the field) 
is assumed to be given at time k by 

P & ) = P2>(0)PF+S&)- (4.H) 

In other words, just before the interval of interest, we 
assume that the density operator of the total system is 
a product of the density operator PD(0) of the detector 
and the density operator p-p+s(k) of the electromagnetic 
field together with its sources. (2) The density operator 
PF+s(ti) is assumed to be given by 

PF+s(fe) = exp(—i£F+s{k— ( /*- i+Ak-i)» 
XTr I>p(^i+A/< . i+)> (4.12) 

where <£F+S is the Liouville operator for the electro
magnetic field plus sources and TTD indicates trace with 
respect to the detector variables. This amounts to the 

assumption that the time development of the density 
operator of the electromagnetic field plus sources be
tween intervals k to k~\-Ak takes place independently 
of the detector. In other words, the detector has a 
negligible effect on the temporal character of the field 
compared with the effect of the sources. The assump
tions (1) and (2) are equivalent to assuming that 

CB<=PD(0) e x p [ - i £ F + s ( / < - f e - i - - Afc_i)] T i p . (4.13) 

Two other simplifying assumptions are also introduced. 
(a) The density operator of the detector PD(0) is assumed 
to be one corresponding to some equilibrium ensemble, 
and in particular, an ensemble in which the probability 
of photoionization states is negligible, (b) I t is further 
assumed that the initial density operator of the system 
can be written as 

p(tQ+At0=0) = pD(0)p¥+s(Q), (4.14) 

where PF+S(0) is an appropriately chosen initial density 
operator for the field plus sources. 

Before proceeding further, it is worthwhile to mention 
that assumption (1) and the assumption that PD(0) is 
an equilibrium ensemble density operator are familiar 
ones in the statistical theory of the time development of 
large systems. Pauli20 was one of the first to use these 
statistical assumptions when he introduced the re
peated-random-phase assumption (rrpa) in deriving the 
master equation. Wangsness and Bloch21 modified the 
rrpa to apply to interacting systems, a problem analo
gous to the present problem. These assumptions have 
been found to be justified under certain conditions by 
approximating the correct dynamical equations. This 
justification has been given by Van Hove22 for the 
master equation and by Argyres23 and Argyres and 
Kelley24 for the system, studied by Wangsness and 
Bloch. I t is not the aim of the present paper to justify 
these assumptions for the problem studied here, but 
only to appeal to their physical reasonableness. 

With regard to assumption (2), our treatment does 
not explicitly take account of modification of the field 
distribution engendered by the presence of the detector, 
particularly in the region of the detector where, for 
example, one may expect attenuation by the detector. 
We assume that this modification can be adequately 
approximated by selecting an appropriate "effective 
volume" of the detector within which the action of the 
unmodified field is confined. This "effective volume" is 
related to the damping length of the field inside the 
detector. I t should be noted that the modification of the 
spatial dependence of the field in the region of the de
tector does not contradict the assumption that the field 

20 W. Pauli, Festschrift zum 60 Geburtstage A. Sommerfelds 
(S. Hirzel Verlag, Leipzig, 1928), p. 30. 

21 R. K. Wangsness and F. Bloch, Phys. Rev. 89, 728 (1953). 
22 L. Van Hove, Physica 23, 441 (1957). 
23 P. N. Argyres, Proceedings of the Eindhoven Conference on 

Magnetic and Electric Resonance and Relaxation, edited by J. 
Smidt (North-Holland Publishing Company, Amsterdam, 1963), 
p. 555. 

24 P. N. Argyres and P. L. Kelley, Phys. Rev. 134, A98 (1964). 
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just outside the detector is determined to a high degree 
of approximation by the sources alone. 

As a consequence of assumption (a), the second Pi in 
the definition (4.2) of An drops out, since it acts on 
PD(0) . Using this fact and (4.11), we rewrite (4.10) in 
the form 

= T r p + B r C I I TraCRSfo+Afc, t%)pD(0) 

Xexp( - i£ F - f s{^ - f e - i+A/ ,_ 1 ) } ) ]p F + s (0 ) . (4.15) 

Here we have expressed (2* in terms of (H and the super 
time evolution operator $(t',t) defined by 

9=T,PiOPi (4.16) 

and 

S(*7)0= U-1(t'it)0U(t/,t'), (4.17) 

6 being an arbitrary operator. In (4.15), Trp+s indicates 
a trace with respect to the field-plus-source variables, 
and T indicates time ordering with later times to the left. 

The time development of the total system during the 
intervals t% to U+ AU is now approximated. I t is assumed 
that the interaction between the field and the detector 
contains only terms linear in the creation or annihilation 
of photoionizations. The time development operators 
are expanded as a power series in the interaction Hamil-
tonian, and only the linear terms in the interaction 
Hamiltonian are retained, the higher order terms being 
neglected and the zeroth-order term vanishing when the 
projection operator (R is applied, because the time de
velopment operator to zeroth order does not produce 
photoionizations. On expanding U±l(t\t) to first order, 
the following is obtained: 

U^KO^Uo^KW+U^KW, (4.18) 

where 

i!7o±1(*/,0 = exp[±f lCo( / , -0 ] ; (4-19) 

U1+
1(t,t) = iexp(-i3C,0t)F(t',t) exp(#C0O, (4.20a) 

and 

UrKt'j) = - i exp(-i3C0t')F(t',t) exp(#C00. (4.20b) 

Here 3C=3Co+3Cj, where 3C0 is the total Hamiltonian 
except for the interaction term between the field and the 
detector, and 3Cj is the interaction Hamiltonian. The 
sources are assumed not to interact with the detector. 
Also, F{t\t) is given by 

F(tl :',/)« J <*r5 dr^i(r) , (4.21) 

where 

OCI(T) = [exp(i£0r)5Cj] 

= exp(^C0r)5C/ exp(~-iX0r). (4.22) 

Here <£0 =<££>+<£ F+S is the Liouville operator corre
sponding to 3C0. £D is the detector part of <£0 and <£F+S 
is the field-plus-source part. Furthermore, we write for 
the part of 3Cr(0 which is linear in the fields 

3ez(0 = 0C^+>(0+3Cr(-)WJ 
(4.23) 

3C/(±)(0 = L / i r C / ± > ( r , 0 ^ p ( ± ) ( r , 0 . (4.24) 

where 

C ( + ) and C(~} are detector operators which create a 
particle in one state and annihilate it in another. A(+) 

and ^4(~) are, respectively, the positive and negative 
frequency parts of the vector potential operator. 

Substituting (4.20a) and (4.20b) into (4.15), we obtain 

WK(h,t2,--',tK)AtiAt2-'AtK 

- L Trp+s TxD{PlKF{tK+AiKi IK)PD(0) 
h,h,-',iK 

XTrD- --[,PhF(h+M2, h)PD(0) 

XTrD{PhF(h+Ah, *I)PD(0)PF+S(0) 

XF(h+Alh h)Ph]F{h+Ah, h)Phy • • . 

XF(tK+MK,tK)PlK}. (4.25) 

The integral denoted by F(l+At, t) becomes on 
integration 

F(t+M,t) = 
•exp(i(£i)+£F+s)A0-1"] 

3C/(0 ) . , . ,26) 

The dominant contributions to the multitime proba
bility come from singularities in the Fys associated with 
vanishing energy denominators. 

To separate the field-plus-source variables from the 
detector variables so that the traces can be taken inde
pendently, we introduce the following approximations 
with the eventual result that the square bracket in 
(4.26) depends only on detector variables. We replace 
JBF+S by £ F in the square bracket term of (4.26), in 
other words, approximating <£F+S to zeroth order in the 
interaction between the field and the sources. The pro
jection operator Pi operating to the left of i7, and PD(0) 
operating to the right give rise to positive matrix ele
ments of the £D operator in the square bracket term. 
In other words, when matrix elements are taken, <£# 
becomes the energy of the detector in a photoionization 
state minus the energy in a nonphotoionized state, a 
positive quantity. In order for F to give rise to a singu
larity in energy, the matrix elements of its argument 
<£o must vanish. For «£0 to vanish, the matrix elements 
of <£F must be negative since £& is positive. This will 
occur only when the term in square brackets operates 
on the positive frequency part of the vector potential 
operator in the interaction Hamiltonian. We further 
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replace £F by — co0, co0 being the average frequency of 
the radiation field. This is the approximation that the 
radiation field frequencies appearing in the terms in
volving detector variables can be replaced by some 
average frequency of the radiation field. Since the 
interval At will be of the order of the electronic correla
tion time TC of the detector, the approximation of re
placing £F by —co0 is valid provided Acorc<<Cl, where Aw 
is the bandwidth of the field. Using the above approxi-

In (4.30) T indicates time ordering with later times to 
the right in the first product and later times to the left 
in the second product. Note that with the introduction 
of time ordering we may drop the restriction on WR that 
k<ti+i. We have used the fact that the detector time 
development operator exp(—i5Cj>0 commutes with 
PD(0), £Dy and the P's to eliminate the time dependence 
from the C operators in obtaining (4.31). The multitime 
transition rate has here been expressed as integrals of 
products of detector terms and a term due to the field; 
it has the form suggested in Sec. II, (2.6). G(K) is the 
Green's function or correlation function for the field 
and its sources. 

The multitime transition rate can be expressed alter
natively as 

wK(h,t2, • • • ytK) 
= TrF+spF+s(0).V{2ni(/i)2ai(/2)- • -Wl(tK)} (4.32) 

by rearranging (4.29). Here N indicates the normal 
product where all the ^4(_),s lie to the left of all the 
^4(+),s and, in addition, the time ordering occurring in 

mations, we obtain 

P « / W U , 0 « E (dx'A^{xf,t) 

/rexp(i(£D—u0)At)— l"l \ 
XP{ ; ; KV<+>(rV)) , (4.27) 

and using similar arguments 

(4.30). Also, m(t) is given by 

Sf&(0 = L f [dxdx'K^W) 

XAWTAA^+W). (4.33) 

The correlation function 5CMM'(r,r') is Hermitian and 
9TC(0 is non-negative, facts used in Sec. V. The Hermi-
ticity property, 3CMM'(r,r') = JC^r',!*)*, is seen to follow 
directly from (4.31) when the trace is written in the form 

TrjD(/^(rOP/)tPi>(0)(/M(r)Pz), (4.34) 

where 

/rexp(f (£D+COO)A/) — l-i \ 
/"«=( v r — R ^ W J - (4-35> 

\L i(£D+uo) J / 
Also, the operator 3K(l) can be written in the form 

£ T±D(X(t)PtfPD(0)(X(t)Pd, (4.36) 
i 

F(t+At, / )P*~£ / dx( KV->(r,fl )PiA^(t,t). (4.28) 
M J \L i(£D+o>o) J / 

Substituting (4.27) and (4.28) into (4.25) and disentangling the field operators from the detector operators, we 
obtain for the multitime transition rate 

f K 

wK(tht2,• • • ,tK) = E Idt!'"dxKdri • • • drK'(XI 3^*'(***/)) 
HI"'UK J *=*1 

fXl'-'-HK' 

XG<,°«...K,1ii ' . . .M'(rA )- • -,TKtK\ n'h,- • ',tK'tK), (4.29) 

where 

G w „ t . . .« .„ ' . . .« ' ( r iV • -,rKtic; Why • • ,tK'tK)^Tx¥+s{PV+s{Q)l[_ A^(r^f I I ^« ' ( + ) ( r /A)} , (4.30) 

and 

f /rexp(i(<£i>-a;o)AO--l"l \ 
3 C ^ ( r , r O - ( A ^ E T r p P i (V+>(r') ) 

(£D—WO) 

'exp(£(£2>+«o)A/) —1 x w ( o )([ itfJ+„.) > - ' - , w H • (4-3i) 
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where 

*(/) = £ fdxJ»(r)A^(i,t), (4.37) 

Consequently, 9TC(/) is non-negative in the sense that it 
is a non-negative number if ^^(r ,*) is regarded as an 
arbitrary complex field function; also TrF+spF+ŝ TC (0 > 0. 

where we have assumed in the second expression that 

rsin({£D+a)0nAt)~f 
At] -> 2*5(£D+m), (4.40) 

L {£D+CO0}§A* J 

making use of the assumption that At>rc. We now recall 
that the condition of Sec. II that, at most, a single count 
occurs in a subinterval was expressed by the inequality 
At<£R~l, where R is the counting rate. Thus, for the 
derivation of Sec. II and the present quantum-mechani
cal derivation to be valid, the inequality J?_1^>rc must 
be satisfied. This inequality is generally not difficult to 
satisfy in practice. 

Thus, we have seen that the multitime transition 
probabilities can be related to correlation functions of 
the positive and negative frequency parts of the electro
magnetic field. We note that these correlation functions 
are expectation values taken in the system of field and 
its sources, since the field operators A(+) and A(_) evolve 
according to the dynamics of the interacting system. 

We now discuss an assumption made implicitly by 
other authors and which is of far reaching consequence. 
The time evolution of the field operators under the full 
Hamiltonian of field-plus-sources is replaced by the 
evolution under the field Hamiltonian alone. In other 
words, we make the replacement 

i4/± )(r ,0 = exp(fi3F+s0^i.(:t)(r) 
^exp( i£ F 0^M ( ± ) ( r )^^; ( ± ) ( r ,0 . (4,41) 

The correlation function G{K) of (4.29) is then replaced 
by one of the same form 

= TrFPF(0) ft ^ M / H ( ^ i ) n ^ « ' , ( + ) ( r / , 0 , (4.42) 

in which the A(±)'s are replaced by ^ / ( ± ) , s , PF+S is 
replaced by pF which does not depend on source 
variables, and TrF-j-s is replaced by TrF. The time 
ordering operator f of (4.30) is no longer necessary 

In Sec. V and Appendix B, use is also made of the 
assumed lattice translational symmetry property, 
3€MM'(r+Rw, rS-Rm) = $W'(r,r'), in case the photo-
emissive surface is a crystal and Rm is one of its primitive 
lattice translation vectors. 

Finally, as a consequence of assumption (a), we may 
rewrite (4.31) as 

since ZA'^ri,ti),A'M(rj,tj)]=:0. Similarly, (4.32) is 
replaced by an expression of the same form in which 
^4M

(~)(r,0 and ^4M'(+)(rV) in the definition of 9fTC(0 are re
placed by Ap'^fat) and A/W(t',t), and in which pF+s 
is replaced by pF and TrF+s is replaced by TrF. There 
thus results a description of the multitime transition 
probabilities in terms of field-correlation functions (4.42) 
involving the free development of the electromagnetic 
field. The correlation functions used by Glauber,11"13 

Sudarshan,14'15 and others are of this type. A question 
which remains unanswered is under what circumstances 
and how this simplification can be justified. 

The discussion up to this point has concerned the 
calculation of photoionization probabilities for a single 
interval / to /+ T. The result can be extended to include 
the average photoionization probabilities for a number 
of intervals of length T by appropriately redefining 
PF+S(0) to be the average of the initial density operators 
of the intervals. In the case of a nonstationary density 
operator the average density operator will be, in general, 
different from the density operator at any one time. 
This point is discussed further in Sec. V. 

V. QUANTUM THEORY OF COUNTING STATISTICS 

We proceed now to evaluate (3.12), (3.11), and (3.13) 
for Pn(t, t+ r ) , G(u), and {n{m]){Vi} in terms of an explicit 
quantum-mechanical expression for wm(t\,fa,' • • ,tm), 
namely, (4.32). Then (3.13) becomes 

(WW) __» TrF-fSPF-f-sA^™} , (5.1) 

where the subscript {ji} has been suppressed, and the 
argument of pp+s has been dropped for simplicity; (3.11) 
becomes 

G(U)->TTF+8PF+SN\ E 
I m~o m! J 

-TrF+sPF+s^{exp|>-1)91]}, (5.2) 

and (3.12) becomes 

Pn(t, t+T) -> Trp+app+BW{(9lV»0 exp(~-9l)} , (5.3) 

( / rsin({£i)+a>o}fAO-|2 \ ) 
3 W ( r , 0 = E TrD\PD(0)[At\ C„<->(r) )P|C><+>(r0 (4.38) 

= 2TT L TrD{pDmK£n+o>o)C^(*))PiC^K*')}, (4.39) 
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where 

9fc==9l(/, t+T) -f. 
= E fRurPfav 

h,k' 

m.(t') (5.4) 

and 9TC(/) is given by (4.33). The quite general expres
sions (5.1), (5.2), and (5.3) have an appealing simplicity. 
The quantity in braces in (5.3) is an operator with the 
form of the Poisson probability distribution for n counts 
in the interval (/, t+T), with the operator 91 represent
ing the mean number of counts in the interval. The 
quantity in braces in (5.2) is the corresponding Poisson 
distribution generating function operator. 

These expressions can be evaluated further most 
simply by using the "coherent state" representation of 
the field (see Ref. 13, particularly Sec. IX) . To proceed, 
we make use of the simplifying assumption (4.41) re
garding the time evolution of the field operators. Then 
PF+S is replaced by PF and TrF+s is replaced by Trp, as 
in (4.42). For simplicity of notation we shall, however, 
henceforth drop both the prime on ^4/ ( ± )(r, /) of (4.41) 
and the subscript F on PF and TrF . Expressed in the 
coherent state representation, p has the form 

P= [ n ( ^ W A ) | {«}><{<*} |p|{/?}><{/3} I , (5.5) 
• / 

where the coherent state | {a}) is an eigenstate of 
A<+>(r,0 

A<+> (r,fl | <«>>=*({<*},r,*) | {«>), (5.6a) 

{{«} | A<-)(r,0 = «({a},r,0*<{a} | . (5.6b) 

In terms of the mode expansion for A ( + )(r ,0 

/fic\V2 

A<+>(M) = £ ( — ) oMt)<r*»*<, (5.7) 
k \2a)jc/ 

the eigenvalue 

/hc\1/2 

» ( W , r , 0 = E ( I a*ujb(r)er«-*' (5.8) 

is given by replacing each mode annihilation operator 
ak by its eigenvalue, the mode coordinate ak. The set 
{a} of all mode coordinates thus characterizes the 
coherent state | {a}) and the eigenvalue (5.8). 

In the coherent-state representation, we then have 

TrPN{f(dl)} = f n ( ^ W % ) 

X<{«}|p| {«><{/?} | { a}> / (^« ) , (5.9) 

where f(x) is some function of x and 

dt' I I didr' £ 3C^-(r,r') 

X a , ( { / S ) , r / ) * S U { « } , r 7 ' ) , (5.10a) 

fflp, 

=rsR«, 

(5.10b) 

(5.10c) 

with 

%»• = Pc2(w4w4.)-
1/2 f dt' f fdtdt' 

X E 3Cw^(r,rO«^(r)*«*v(r')e«-*--*')«'. (5.11) 

On using the mode expansion (5.8) in (5.10a), one ob
tains (5.10b) which is written in matrix notation in 
(5.10c). The matrix St is Hermitian and non-negative 
definite, as a consequence of the Hermiticity of 3CMM>(r,r') 
and the non-negativity of 3TC(/) proved in Sec. IV. One 
sees that the time integral in (5.11) can be evaluated 
immediately, and that the diagonal elements of 9t are 
proportional to T. 

Assuming Aw/co0<3Cl, where w0 is a central frequency 
and Aw is the bandwidth of the field [see the discussion 
after (4.26)], we can approximate (o)kook')~l/2 in 
(5.11) by (ow*') 1 / 2 /W. In this way, 9ffya can be 
expressed in terms of eigenvalues E({a},r,t) of the 
positive frequency part of the electric field operator 
E<+Kr,0 = ^r1(d/dOA (^(r,0 

9fc,«= (c2/coo2) / df f [dtdif £ 5C^(r,rO 

XW),r,n*SA{*},r',n (5.12) 

rather than in terms of the 2l({a},r,/)'s. 
Equations (5.1), (5.2), and (5.3) yield special cases of 

(5.9), with f(x) = xm, e^u~1)x
} and xne~x/nl, respectively. 

If, in the coherent-state representation, p is repre
sented entirely by diagonal matrix elements 

({a} |p | {£}>= <{«} \p\{a})U 8M(ak-fo) (5.13a) 

'-P({<*})IL***w(ak-ph), (5.13b) 
k 

then 

>=Jp({a}) | {«}><{«} |L[ d>ak (5.14) 

The representation (5.14), in which p is expressed as 
an incoherent superposition of coherent states, is called 
the P representation by Glauber.13 Sudarshan has 
shown14'15 that any p can be represented formally in the 
P representation. However, this requires in some cases 
that the P({a}) in (5.14) be highly singular. In particu
lar, this is clearly the case when the number of photons 
represented by p is bounded, for then the sums in Eq. (6) 
of Sudarshan14 are finite, and P({a}) involves deriva
tives of 8 functions. Such highly singular P({a})'& have 
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no classical analogs,25 and p may then be more usefully 
described in the more general coherent state representa
tion of (5.5). 

On using (5.14), (5.9) reduces to 

Trptf{/(31)> = fp({a})f(ptaa)lL d*ak (5.15a) 

= / f(?)W(?)dv, (5.15b) 
J Q 

where 

W(v) = f 5(v~-Vlaa)P({a})Jl d*ak (5.16) 

and (5.3), (5.2), and (5.1) simplify correspondingly to 

/.oo pn 

Pn(t, t+T)= —e-»W(v)dv, (5.17) 
Jo n\ 

/•OO 

G(«)= / ^ - « f ( ^ , (5.18) 
./o 

/•OO 

( » w ) = / v™W{v)dv. (5.19) 

The probability Pn(t, t+T) is thus a compound Poisson 
distribution™'21 some general properties of which are 
summarized in Appendix A. 

The case of a field generated by a prescribed source is 
treated by Glauber.13 Equations (5.15)—(5.19) apply 
also in this case provided 3Iaa is replaced by 9laa. The 
latter is obtained from 9laft, as given by (5.10a), by re
placing ak by afc+afc(0> where a&(J) is a function of time 
determined by the electric current distribution source, 
and is given by Eq. (9.21) of Ref. 13. Thus, Pn(t, t+T) 
is a compound Poisson distribution when the field is 
generated by a prescribed source, as well as when the 
field moves freely, the latter having been assumed in 
deriving (5.17)-(5.19). 

The compound Poisson distribution has been obtained 
by Mandel9'10 for the photocounting problem using 
other methods described in the Introduction. Note that 
it is not simply ensemble averaging which gives rise to 
the compound Poisson distribution. Even in the absence 
of ensemble averaging, Pn{tyt+T) is not a simple 
Poisson distribution unless the nonstatistical state is 
also a coherent state. An example of such a noncoherent 
state is an eigenstate of the number operator of the field. 

The variable 9daa, with respect to which averaging 
occurs in the compound Poisson distribution (5.17), 
contains the correlation function of the photoemissive 

25 See Ref. 13, footnotes 11 and 15. 
26 W. Feller, An Introduction to Probability Theory and Its 

Applications (John Wiley & Sons, Inc., New York, 1957), 2nd ed. 
27 Emanuel Parzen, Stochastic Processes (Holden-Day, Inc., 

San Francisco, 1962). 

surface. This correlation function deals with two prop
erties of the detector not treated in the earlier deriva
tion9 of the compound Poisson distribution. It takes 
account of spatial correlations in the detector, which 
may be characterized conveniently by a detector cor
relation length. Also, it takes account of the region in 
the detector in which the field effectively acts. These 
properties are examined in some detail in Appendix B. 
In the form given by (5.12), %aa reduces too: Jlt+T I(tf)df 
for small enough detector correlation length and small 
enough effective detector volume so that ©, given by 
(B2), is expressed by (B12) and is effectively a constant. 
Here aft

t+T I(t')dt\ in the notation of Ref. 9, denotes 
the intensity at the detector surface integrated over the 
interval t to t+T multiplied by a, the quantum sensi
tivity of the photodetector. 

We now examine properties of Pn(t, t+T) for some 
particular P({a})'s. 

Coherent field. If p represents a pure coherent state 
| {a}), generated perhaps by a single coherent source, 
then 

i>({«,}) = n« ( 2 ) («* , -«*) , (5.20) 
k 

so that 

W(?)=d(v-Vlaa), (5.21) 

and Pn(t, t+ T) becomes simply the Poisson distribution 

Pn(t,t+T) = v»(T>/n\ (5.22) 

withz>=3l«a. 
A coherent state is a special case of a pure (non-

statistical) quantum state of the field | ) . It is note
worthy that the distribution Pn(t, t+T) does not have 
any simple form, such as the form (5.22), when p repre
sents a general pure state of the field p— |) (|. This can 
be seen by using p= | )( | in (5.9). 

Equation (5.20) is an appropriate choice for the 
density operator of a coherent field when the initial 
state is known. It is unnecessary to include explicitly 
the distribution of over-all phase, since the distribution 
of over-all phase does not affect the field-correlation 
functions.28 For many types of experiments in particular, 
for a typical photoelectron counting experiment, the 
measurements are not performed by repeatedly return
ing the system to a known initial state (apart from the 
arbitrary over-all phase factor). A coherent field evolves 
with time from one coherent state to another. Which of 
these coherent states the field happens to be in at the 
initial time of any counting interval is unknown in the 
ordinary counting experiment. Consequently, an ap
propriate density operator for such an experiment on a 
coherent field is not a coherent-state density operator, 
but rather some average of the coherent-state density 
operators through which the field evolves with time. 

Field with amplitudes independent of phases {the product 

28 See Ref. 13, Sec. X. 
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P case). A density operator for the field with mode Here we have used 
amplitudes distributed independently of the phases may 
be useful in describing experiments involving randomi- ^ « a = E^ Ckwe % h *' (5.28) 
zation of the phases. For such a field P{{a}) has the 
product form obtained from (5.10) by insertinga*= \ah\e**. In (5.27) 

^({«}) = G({|«I >)*(<*>), (5.23) a n d ( 5 - 2 S) , 

with CM' = ^kw | oLkak' j = Ck>k*. (5.29) 

r The remaining amplitude average, determined by 
/ Q({ k l })Tl\<Xk\d\ak\ = 1, (5.24a) Q^ | a | ^ a f f e c t s o n l y t h e products of C's. 

On assuming the product form (5.25) for i£({$}), the 
a n ( i phase average becomes a product of phase averages of 

/

the type 
tf({*})IId*A=l. (5.24b) 

k [2* 
<6«*>*=i eil*f{<j>)d<j>=B(l), (5.30) 

If, in addition, the mode phases are mutually inde- A 
pendent, then 

where / is an integer. If fk is real, then Bk(l)* = Bk(—l). 
jR({0})=n/*(^&), (5.25) In case /*. is given by (5.26), I? becomes the Fourier 

k transform of g, assuming now that f_^ g(<l>)d<l>~ 1 '• 
where the function fk is normalized according to *«> 
fo2* fk(<t>)d(j>= 1. The function /* can be defined as B(l) = J eil+g(<t>)d<l>. (5.31) 

/*(«)= E gk(<i>-2>im) I \ gk(4>)d<l> (5.26) when m= 1, (5.27) becomes 

in terms of a function g(0) defined for - oo < 0 < oo. (9ft««>*=E Cufc-'to-*))* 
The properties (5.23) and (5.25) yield a simplification 

in the expression for (n[m]), but do not appear to lead ~ E ' Ci2(e~i(^1-^2))^+E d i 
to any significant simplification of the expressions for 12 1 
G(«)andPn(*,H-r). . R m j L V r , < - - v 

To evaluate the moments (5.19) let us first calculate ~ E U 2 £ i ( - I J ^ W + E <-n, (5.^2a) 
the phase average of 9ltta

m 

/

where, for clarity and simplicity of notation, a subscript 
yiaamR({<l>})IL d<j>k

 k* h a s b e e n abbreviated to i. The first summation of 

k (5.32a) has been decomposed into summations in which 
no two indices are alike, indicated by a prime on the 

*. ^'klkm+1^/k2km+2'' '^kmk2m summation symbol. The same procedure is used for 
m>l. We find for the phase averaged part of the second 

Jfcl,&2>*' *»&2i 

X(e-w*î M----^*w^*m+i-**m+2 **2«))̂ . (5.27) and third moments 

<9l««2>*= £ ' C13C2^i(-1)5,(-1)58(1)54(1) 
1234 

+L/{(2C11C23+2C13C21)JB2(-l)B3(l)+[Ci!.C13B1(-2)JB2(l)53(l)+H.c.]} 
123 

+ £ ' {C11C22+C12C2l+C12
251(-2)52(2)+C2Ci1C12B1(-l)52(l)+H.c.]}+i: C n

2 , (5.32b) 
i 2 i 

(3laa
8)*= £ ' ^6+ £ ' F 6 + E ' ^ 4 + E ' ^ 3 + E ' F 2 + E Fi, (5.32C) 

123456 12345 1234 123 12 1 

F«=CHC,^,«5 1(-1)5,(-1)B,(-1)5 4(1)5»(1)5,(1) , (5.33a) 

F 6= ( 3 C U C M C « + 6 C M C M C M ) 5 , ( - 1)S,(-1)54(1)5«(1) 
+ (3C13C14C26Bi(-2)i?2(-l)53(l)£4(l)£B(l)+H.c.), (5.33b) 
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^4=C(3C13C14C21+6C11C13C24)Si(-l)JB2(-l)JB3(l)JB4(l)+C12C13C14JB1(-3)52(l)B3(l)54(l) 

+ (3C1 3C l4C2 2+6C1 2C1 3C24)51(-2)53(l)54(l)+H.c.]+(3C1 3
2C24+6C13C14C2 3) JB1(-2)£2(-l)53(2)54(l) 

+ (3CiiC22C34+3Ci2C21C34+6CnC24C32+6Ci4C2iC32)53(—l)Bi(l), (5.33c) 

/ ?
3 =(3Cn 2 C 2 3+6Ci iC i 3 C 2 i ) 52 (—1) -B 3 (1 )+CHC 2 2 C 3 3 +2CI 2 C 2 3 C 3 I+3CI IC 2 3 C 3 2 

+ (3C132C22+6C12C13C23)J51(-2)JB3(2)+[3C11C12C13S1(-2)52(1)JB3(1) 

+ (6C11C12C23+6Ci2C2iC13+6Ci1C13C22)-Bi(-l)JB3(l)+(3C13
2C21+6Ci1Ci3C23)£i(-l)JB2(-l)JB3(2) 

+ 3 C 1 2
2 C 1 3 5 x ( - 3 ) 5 2 ( 2 ) 5 3 ( l ) + H . c ] , (5.33d) 

F 2 =[3C 1 1
2 C 1 2 J Bi( - l )5 2 ( l )+3C 1 1 C 1 2

2 5 1 ( -2 )5 2 (2 )+H.c ] 

+ 3 C 1 1
2 C 2 2 + 6 C 1 1 C 1 2 C 2 1 + C 1 2

3
J B 1 ( - 3 ) 5 2 ( 3 ) + ( 3 C 1 2

2 C 2 1 + 6 C H C 1 2 C 2 2 ) - B 1 ( - 1)S,(1), (5.33e) 

f i = C „ 8 , (S.33f) 

where H.c. denotes the Hermitian conjugate. 
Consider the case in which the /*(<£') are specified by 

using the Gaussian functions 

gk{<i>') = (2Tt<Tk
i)-m<r^(-^^i^ (5.34) 

in (5.26). Then (5.31) yields 

Bk(l) = « « * H i V = Bk(-l)*. (5.35) 

Two limiting cases are of particular interest. If all the 
<rk —> 0, then 

w } ) - * n «(**'-**). 
k 

A coherent state results as a special case if 

o({i«'i})=n«(i«* ,i-i«*i)i«*'i-1-
k 

Correspondingly, (3la'a 'm) = 3laam. The other limiting 
case is the following. 

Stationary field. The P({a}) representing a stationary 
density operator diagonal in the number representation 
depends only on the mode amplitudes,13 the mode 
phases being distributed at random. This case results 
when all the fk— l/2ir. I t is obtained in particular when 
all the a-*;—» oo in (5.34). In this case (5.25) becomes 

^({^})=II(27r)- 1 

and (5.23) becomes 

P({a}) = e({l«|})II(l/2ir). (5.36) 

On using (5.15a) with /($!««) = 9^a«m and using the 
multinomial expansion for 3 l a a

m with 9fl«a given by 
(5.10b), the expression (5.19) for the wth factorial 
moment of Pn(t, t+T), which is also the mth power 
moment of W{v)y can be reduced to 

( » w ) = » i E ai(i»i2i)-iJRi2mM) 
{W12} 1,2 

X ( I l 5 ( E w 2 i , Z ^ i 2 ) | a i | 2 f W 1 2 ) , (5.37) 

where the sum is over all sets of (non-negative) 
mk^—mn such that ]Cwi2=m, where the 8 is a 
Kronecker 5, and where (• • •) denotes the average 

/ • •e({|ai»n<*W2x. 

I t is convenient to express these results in terms of the 
cumulants nq of W(v) [see (Al ) ] . The cumulant K\ is 
simply the mean of the distribution W(v), while K2 is 
the variance and K3 is the third moment about the mean. 
The cumulants Kq

f of Pn(t, t+T) are given in terms of 
the cumulants nq by (A5). In particular, K/—KI, 

K2/ = KI+K2, and KZ=KI+3K2+KS. We note that Ki=(n)i 

the mean of the distribution Pn(t, t+ T), K2= ((n— (n))2), 
the variance, and Kz=((n—(n))z), the third moment. 
We have for the first three cumulants, introducing 
ai= |o:*|2, di=(\ai\2), 

«ci=E5Rii^i> 

/C2=L' {8 tn^22<(a i~a 1 ) (a2-a 2 ) )+9i i2^2 iW2)}+i : JRn2<(fli-fii)2>, 

(5.38a) 

(5.38b) 

K3=L' ffiiiffiiiWzz((ai—ai)(<H~a2)(az—az))+2^ 
123 

+ 3 £ ' {^ii2^22((a1-a1)2(a2-a2))+29in9?125R2i((a1-a1)(a la2-(aia2))>}+i: W u ^ a i - f i , ) 1 ) , (5.38c) 
12 1 



A 330 P . L . K E L L E Y A N D W. H . K L E I N E R 

where a prime on a summation symbol indicates as 
before that no two indices are equal. Equation (5.38) 
can be obtained alternatively using (5.32) and (5.35) 
with all ork->oc in (5.35) so that all £(7) = 0, 1^0. One 
sees from (5.32) that additional types of amplitude 
averages appear in general \i P—QR is not stationary. 

When the mode amplitudes are independently dis
tributed the amplitude averages break up into factors, 
and the cumulants (5.38) for a stationary field simplify 
further to 

*i=E9lii<Si, (5.39a) 
i 

K2-Z'9?i23?2iaia2+E 9*n2<(ai-5i)2>, (5.39b) 
12 1 

123 

+ 6 £ ' 9 t 1 1 8 W M ( a 1 - a 1 ) ' ) a * 
12 

+E9?n8<(«r~-51)3>. (5.39c) 
1 

Ideally incoherent field. An important special case of a 
stationary field with independently distributed ampli
tudes is an ideally incoherent state, generated say by a 
"completely chaotic'' source.13 In this case, P({a}) is 
given by (5.36) in which Q is given by the Gaussian 
expression 

(?({|a |}) = I I 2(nk)-
1e-W<n*> (5.40a) 

k 

= exp(-icK
tS3«)n 2(nk)-

1, (5.40b) 
k 

where (nk) is the mean number of photons in the £th 
mode, and $8 is a diagonal matrix, $bkk' — 2bkk>((nk))~

l. 
In the photon-number representation, p is given by its 
diagonal elements 

(fik)
nk 

< W \P\ { » » = I I 7 7 - ^ - r r - • ( 5 - 4 1 ) 

In this distribution the mode photon numbers are inde
pendently distributed, each with a geometric distribution 
(see Appendix A). In thermal equilibrium, (nk) is given 
by (nk)— [exp(fiook/kBT)~ l l - 1 , corresponding to black-
body radiation. 

The averages of (5.39) can be evaluated in this case 
using 

(|a*|2r>=(ir<»Jfc>)"1 

X / \ak\^e^^2/<^d2ak^r\(nkyy (5.42) 

since the modes are independent for the P({a}) given 
by (5.40). The first three cumulants are then given by 
(5.39), with d=(n), ((a-dY)^(n)% and {(a-a)*) 

— 2{n)z. However, as shown in Appendix C, where a 
more detailed discussion of this case is given, the general 
expression 

««=(? -1 )1 E W W - W W 3 - 3 ! ? i , (5.43) 
1 2 - - q 

for the cumulants of W(v) can be derived by evaluating 
the characteristic function for W(v). 

Gaussian squared-amplitude field. We consider another 
special case of a stationary field with independently 
distributed mode amplitudes. A Gaussian squared-
amplitude field is specified by 

/7r<r*V1/2 

«(M»=n(-) 
X o p C - K C M ' - 1 « . | ' ) / ~ ) * ] , (5-44) 

with moments in (5.39) given by d^ \a\2, ((a—a)2)=o-2, 
and ((a—a)3)=0. The approximation of extending the 
range of integration for \ak\ from 0<\ak'\<co to 
— °° < | ak | < oo has been made to obtain the normaliza
tion in (5.44) and the moment expressions above. The 
error is small if ak<^\ak\

2. Equation (5.44) reduces to 
the case of fixed amplitudes when the ak —» 0. Note that 
in this limit the cumulants (5.39) have the same form as 
the corresponding ones given by (5.43) for the ideally 
incoherent field except that no diagonal elements of 9? 
occur in (5.39). 

As a simple illustration, for a field with only a single 
mode excited (ak = 0 when k^l) the mean number of 
photoionizations and the mean-square deviation in the 
number of photoionizations for the case (5.44) are, 
according to (5.39), given by 

(n>=fRn|a1 |2 , (5.45) 

and 

<̂ 2>— <^>2= <̂ >{ 1-h(^Xcn/1cex12)2> • (5.46) 

Note that (n) may be larger than (| «i | V f 1 ) 2 despite the 
condition |ai|2cri~"1>l. In this case a significant de
parture from Poisson statistics may occur with only a 
small uncertainty in the amplitude of a single mode. 

Spread-out coherent state. As a final example we con
sider a simple nonstationary distribution of the mode 
coordinates which can be used to represent a state of the 
field in which noise is superposed on a field in the 
coherent state | {a}). I t is given by 

i W J H D X W ) - 1 e x p [ - | ( a / - a , ) M | 2 ] . (5.47) 
k 

I t reduces to the coherent state field of (5.20) when the 
(Tk —» 0 and to the ideally incoherent field of (5.40) when 
<Tk2=(nk) and the afc~->0. Its cumulants can be found 
by an extension of the derivation in Appendix C. They 
are given by 

Kq:=Kqiinc+Kq(a) , (5.48) 
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where tfg.inc, the entire contribution when all ak — 0, is 
just the cumulant (5.43) for the ideally incoherent field 
with (ftk) replaced by o-fc2. The additional contribution 
arising when not all a&=0 is given by 

12-..ff+l 

<q+iaq+i. (5.49) 

We note finally that the examples of field density 
operators discussed in this section in connection with 
photoelectron counting experiments may be useful in 
the theory of other types of photodetection experiments. 

VI. DISCUSSION 

The assumption was made in Sec. IV that free field 
motion given by (4.41) together with a statistical model 
of the initial field density operator can adequately 
simulate the dynamical effects of a field interacting with 
its sources. Concerning the statistical description, not 
only do we use the choice of a nonpure case density 
operator (p^ |) (|) to represent in the customary way 
our ignorance about the initial state of the system, but 
we also try to take into account in our choice of density 
operator dynamical effects which would otherwise be 
neglected as a consequence of the free field approxima
tion. The statistical description also might be used in 
this way if the approximation of free field motion were 
replaced by the less restrictive approximation, discussed 
in Sec. V, that the field evolves in time according to a 
prescribed current source which may be a random 
variable. 

The justification of the above assumption has not 
been undertaken here. Justification might be given in 
terms of a derivation of an appropriate set of equations 
of motion of the field coupled to its sources. For example, 
for the case of a maser source this approach has been 
used by Grivet and Blaquiere,29 Haus,30 and Lamb31; 
however, there does not appear to be an adequate fully 
quantum-mechanical treatment of the equation of 
motion problem including nonlinear effects, in particu
lar, one which can, in general, be used to justify the 
assumption used in the present paper. The assumption 
of a free field together with a statistical model can, of 
course, be alternatively justified by its usefulness in 
describing the results of experiment. 

A classic application of the statistical method men
tioned above employs the relatively simple, ideally in
coherent field description [(5.40) in our formalism] to 
simulate the very complicated dynamical description of 
the field generated by a large number of uncorrelated 
sources. The ideally incoherent field has been used 
almost exclusively to describe fields from available 
sources until recent years when laser sources became 
available. 

29 P. Grivet and A. Blaquiere, Ref. 15, p. 69. 
30 H. A. Haus, Quarterly Progress Report No. 72, Research 

Laboratory of Electronics, MIT, p. 53, 1964 (unpublished). 
31W. E. Lamb (to be published). 

A laser field, because of its supposed high degree of 
coherence, might well be represented by a coherent 
state (5.20) or, more generally, by a coherent state with 
"noise" (5.47). Use of a coherent-state density operator 
implies that we know what pure state the field is in 
initially (aside from the unknown over-all phase) and 
that the effect of the sources is to leave the field moving 
as though unperturbed by sources. To the extent that 
use of (5.47) for a laser is to represent effects of coupling 
of the field to sources rather than ignorance of the initial 
state, it might be assumed for a counting experiment 
that the parameters of this distribution depend on the 
duration T of the counting interval. Thus, (5.47) with 
the crfc's depending on T could represent "diffusion" 
away from a coherent state. If we use the Gaussian 
function (5.34) in (5.26), then the distribution (5.23) 
together with (5.25) and (5.26) could similarly represent 
diffusion of the mode phases. This approach could be 
used also if the field evolves according to prescribed 
current sources rather than as if in the absence of 
sources. 

For an ordinary counting experiment, the discussion 
of the preceding paragraph unfortunately does not 
apply. This is because in an ordinary counting experi
ment the initial state of the field is not known to the 
extent that (5.20) and (5.47) would represent suitable 
density operators [see comments after (5.22)]. More 
appropriate density operators for an ordinary counting 
experiment on a laser would be obtained by phase 
averaging (5.20) and (5.47). Alternatively, the Gaussian-
squared amplitude random-phase choice (5.44) could 
be useful. 

In view of the foregoing discussion it is clear that 
more detailed information could be obtained about the 
field from more refined photocounting experiments in 
which the state of the field at the beginning of the count
ing interval is better known than it is in an ordinary 
counting experiment. 
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APPENDIX A: PROPERTIES OF THE COMPOUND 
POISSON DISTRIBUTION 

The generating function G(u) for Pn(t, t+T) is given 
in terms of the characteristic function 

/•OO 

*(*) = / exp(isv)W(v)di>, (Ala) 
Jo 

- / exp(«9Xaa)P({a})II &ah, (Alb) 

f «> (w)n 
-exp £*<r—- , (Ale) 
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and the cumulants KQ of W(v) by and the generating function 

G(.)-*(l-0), (A2a) ^r/iWf.MT (A12) 

= exp X > 9 . (A2b) 
La-i q\ J generates a negative binomial distribution for Pn{t,t-\-T) 

It is apparent from Pn(t,t+T)=(d/du)nG(u)\u=o/nl /r+n-l\/ 1 \ y M \M 

that each Pn(t, t+T) is a nonlinear function of all the p»(*> t+T) = ( X l 4 ~ / V7Tr) ' ^A13^ 
K3'S. According to (5.19), the mth. factorial moment of ^ 
P.(*, <+r) is just the « th power moment of WW, W h e n r = t w{v) i s a n expomntial distribution 
given by 

W(v) = fTle~v/^ (A14) 

r00 f d Y 
J v™W{v)dv = ^ — J *(*) I .-o. (A3) a n d P n ^ / + yj jg a gftWffrff& distribution 

Expressions for the wth power moment of a distribution pn(/ /+ x) = . (A15) 
as a linear combination of the mth and lower cumulants (//+ l)n + 1 

of the distribution are tabulated by Kendall and Stuart.18 

On the other hand, the characteristic function of APPENDIX B: DETECTOR CORRELATIONS 
w ' To get some insight into the significance of the matrix 

[ oo (is)9~\ 9i °f (5.H), let us consider the spatial integral part of 

X) Kq (A4) SRkk' in the case of plane-wave modes 
3=1 q\ J 

^,x(r)=F-1/2exexp(ik.r) (Bl) 
in terms of G and the cumulants tcq' of Pn(t, t+T). Con
sequently, using (A2b) for G(u), we obtain an expression W1th a)k=ck. Then, 
for Kq as a linear combination of the first q K/S 

©fcfc'= v~l L v V / / ^ ' ( ' 1^2 ) 
MM' J J 

\dv/ 
= E C ^ , (A5) 

*=o ',==1 Xexpp(k/«r2—k'ri)]<iriJr2 

( - l) '~w 

- { - J (^-1)>| = 2 J -
v.\dv/ 

= Z *»«, (A6) 
o m-itnl(j—m)\ Xexp <flWr, (B2) 

where, in general, = J I L ^ expP(k'-k) -R] 

".' ~ :<TW 
and, in particular, Cqi = Cqq—\. This is in contrast to 
the dependence of Pn(t, t+T) on all the Kq

9s. This is also where we have introduced the center of mass and rela-
in contrast to the nonlinear dependence of Pn(l, t+T) tive coordinates 
and (n[m]) on the Kq's. The Cq/s for tf<4 can be found T> 1/ . \ /-r>o\ 
in Ref. 9. K=2(ri+r2) , r=r2—n (133) 

We give for reference the first three factorial moments a n d the function L(R,r) defined by 
(n[m]) in terms of the cumulants KQ.18 

/ r i , / v , x L(R>r)=7-1E«i.M'(ri ,r2)^V. (B4) 
<WI1]>=<»>=KI, (A7) MM' 

<*[«>=<»*>- <^)=K2+fc1
2, (A8) Also, 

/

t+T 

<fcV<«*-«*'>'\ (B5) 

As a formal example, suppose v is distributed accord
ing to a gamma distribution Assuming now that the region where photoemissions 

__ __ occur is crystalline with primitive lattice translations 
W(v) = {fxV(r)) Hv/tx)^~le ''". (A10) R n a n d reciprocal lattice translations KJ/2T, we observe 

Then that 

^ ) = (l-w/i)-% (All) 3C^(rj+Rn, r ,+R n )« JC^(ri,r«), (B6) 
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and consequently that L is periodic in R 

L(R+R„, r) = L(R,r) = E Mfa,r) exp(iicy.R). (B7) 

The last expression is a Fourier series representation of 
L with respect to R. The crystalline nature of the de
tector is manifested by the R dependence of L(R,r). We 
also introduce the Fourier transforms 

#(icy,q)= / M(icy,r) exp(iq-r)^r. (B8) 

Assuming that the correlation length for If (icy, r), the 
dimension of the region about r=0 where Af(icy,r) is 
appreciable, is small compared to the dimensions of the 
effective photoemissive volume, we may, without signi
ficant error extend to infinity the limits of integration 
in the definition of iV(Ky,q). Equation (B2) can then be 
written in the alternative forms 

©, kk 
*J J 

r) 

Xexp I Y \ • r L r A f o - k + k ' ) , (B9a) 

k'+k\ 
WlCy-k+kO, (B9b) 

where 

A(k) = J exp(*k.R)<*R (BIO) 

is a function peaked about k=0 with range of the order 
of the reciprocal dimensions of the effective photo-
emissive volume; it approaches (27r)35(k) in the limit of 
large effective photoemissive volume. 

For the photodetection problem of interest here k, 
h' < 104 cm"1, while KJ > 108 cm"1 unless KJ=0. Therefore, 
only the Ky=0 term contributes to the series, and (B9) 
reduces to 

@ w = ]M(0,r) expf / Y r |<JrA(k'--k) (Blla) 

' ^ ( k ' + k J ^ X k ' - k ) . (Bllb) 

In (Bll) the R dependence of L does not enter, so that 
the detector behaves as a continuum. 

When the correlation length of Af(0,r) is small 
compared to the wavelengths of the field, as when a 
photoemission involves only an atomic volume, then 
N(0, (k+k/)/2)^Ar(0,0) and (Bllb) reduces to 

®^-7V(0,0)A(k ,-k). (B12) 

This is practically independent of k'—k if the ap

propriate dimension of the effective photoemissive 
volume is much less than the differences in wavelengths 
involved. 

The finite spread in A is necessary for the observation 
of beats in photodetection. If A were actually a Dirac 
delta function, SR would be diagonal, and the interfer
ence terms between modes would vanish. The interfer
ence terms arise because of the presence of spatial as 
well as temporal beats. These spatial beats would 
average to zero if the effective photodetector length 
were much larger than |k—k'j""1. 

APPENDIX C: IDEALLY INCOHERENT FIELD 
:^ 

In this case the characteristic function for W(v) can 
be evaluated further. From (Alb), (5.10c), and (5.40b), 
we have 

*(*) = 
/ 

exp[-i«t(«8-2w9i)a] I I d2ak 
k 

I 
(CI) 

exp[-J«t j j5 a ] j j j2 a t 

We next make two changes of variables: First, a change 
of scale, a! = S31/2a, so that the exponent of the numerator 
becomes -(l/2)a/+(l--2wS3-1/2maS-1/2)a/ and that of 
the denominator becomes ~-(l/2)a / ta /; the second, 
a / :=tta", is a unitary transformation, ll~1 = U+, which 
diagonalizes the Hermitian and non-negative matrix 

with 

so that 

*(*) = -
/ 

s=$8-1/2^133-1/2 j 

£M'=i«»*X»*'»1/s8iM', 

exp[- i«"+( l -2w$)a"] I I dW 

/ 
exp(-i«"V')II dW 

i 

where 

®=u-isu=u-i»-i/2ma3-i/2u 

(C2a) 

(C2b) 

(C3) 

(C4) 

is diagonal, real, and non-negative. For both changes of 
variables, the Jacobian for the change in volume element 
is independent of the variables, and therefore cancels 
between numerator and denominator. The method used 
here is an extension of a method18,32 often used in other 
contexts corresponding to the case when 9£ is real. 
Evaluating the integrals then yields 

*W = II(l-2is5Di)-1
l (C5a) 

i 

= [de t ( l -2w$)] -S (C5b) 

= [de t ( l -2wS)]- 1 , (C5c) 
32 U. Grenander, H. O. Pollak, and D. Slepian, J. Soc. Ind. 

Appl. Math. 7, 374 (1959). 
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the Reai" integral and the I m a / ' integral each con
tributing a factor (1 — 2w$Dj)~1/2. The cumulants of 
W(y) are then found from (Ale) and (C5) to be 

K f l = 2 « f a - l ) l 2 : 3 V (C6a) 
i 

= 2«( 9 - l ) !Tr2 ;« (C6b) 

= ( ? - ! ) ! E <w*i><»*2> • • • 

X (wjb̂ SftAiJfcaSRjfeaJfeg" ' " S ^ M i • ( C 6 c ) 

I t is apparent that W(y) and Pn(t, t-\-T) do not depend 
on the matrix X in its full generality, but rather only on 
its eigenvalues. 

In case JR is a diagonal, so is X, with !£*&=1(^ )3^ . 
Also, $ = £ if we choose tt=l. The expression (C6c) 
then simplifies to Kq= (q— 1)! X2fc«̂ fc>9?&/b)̂ -

The characteristic function </>(.?) of (C5a) is a product 
of characteristic functions (Al l ) for exponential dis
tributions ( r = l ) , so that W(v) is the convolution of 
these exponential distributions with mean m and vari
ance *2. Similarly, G(w) is a product of generating func
tions (A12) for geometric distributions, so that 
Pn(t,t+T) is the convolution of these distributions 
with, according to (A5), mean KI=KI and variance 
K2/=:Ki+/C2. These expressions for W(v) and Pn(t, t-\~T) 
could become asymptotically normal with increasing 
number of modes excited, according to the central limit 
theorem33 but only if K2 —>°° . 

On the other hand, when few modes are excited, one 
can more readily exhibit the results explicitly for W(v) 
and Pn(t, t-\-T). Thus, the case of a single-mode excited 
((nk) = 0, k^l) yields simply the exponential distribu-

33 Reference 19, p. 257. 

tion (A14) for W(y) and the geometric distribution 
(A15) for Pn(t, t+T); n in these equations is given by 
/*=«i = 2S51=(»i>9iii. 

If just two modes 1 and 2 are excited, carrying out 
the convolution integral yields 

W(v)= ( e - ^ - e - ^ ) / 0 u i - M 2 ) , (C7) 

where the m = 2©j with I— 1, 2 determine the component 
exponential distributions. The two roots 3)i and SD2 of 
the determinantal equation det(£—X) = 0, are, of 
course, easily expressed in terms of the invariant 
quantities T r £ and deti£, or in terms of the invariant 
quantities from (C6) 

«i=2(SDi+SD2) = <»i>5Rn+ <«2>S»22, (C8a) 

«C*=4($Dl2+5V) 

- (n1)mn2+(n2m222+2(n1)(n2)dtudt2u (C8b) 

Corresponding to W(v) of (C7) is 

P»(/,H-?0 = [(———) 
Lvi+a/An)/ 

- ( — — — ) 1/(MI-M2). (C9) 
\1+(1/A*2)/ J7 

A detailed examination34,35 of the special case in which 
the two modes represent orthogonal modes of linear 
polarization of a plane-wave beam gives the results (C7) 
and (C9) with m=%(l+P)n and ii2=\(\—P)n, where 
n is the mean number of counts, and P is the degree of 
polarization in the notation of Ref. 34. 

34 L. Mandel, Proc. Phys. Soc. (London) 81, 1104 (1963). 
35 L. Mandel and E. Wolf, J. Opt. Soc. Am. 53, 1315 (1963). 


